Employing both gender and emotion cues to enhance speaker identification performance in emotional talking environments
نویسنده
چکیده
Speaker recognition performance in emotional talking environments is not as high as it is in neutral talking environments. This work focuses on proposing, implementing, and evaluating a new approach to enhance the performance in emotional talking environments. The new proposed approach is based on identifying the unknown speaker using both his/her gender and emotion cues. Both Hidden Markov Models (HMMs) and Suprasegmental Hidden Markov Models (SPHMMs) have been used as classifiers in this work. This approach has been tested on our collected emotional speech database which is composed of six emotions. The results of this work show that speaker identification performance based on using both gender and emotion cues is higher than that based on using gender cues only, emotion cues only, and neither gender nor emotion cues by 7.22%, 4.45%, and 19.56%, respectively. This work also shows that the optimum speaker identification performance takes place when the classifiers are completely biased towards suprasegmental models and no impact of acoustic models in the emotional talking environments. The achieved average speaker identification performance based on the new proposed approach falls within 2.35% of that obtained in subjective evaluation by human judges.
منابع مشابه
Employing Emotion Cues to Verify Speakers in Emotional Talking Environments
Usually, people talk neutrally in environments where there are no abnormal talking conditions such as stress and emotion. Other emotional conditions that might affect people talking tone like happiness, anger, and sadness. Such emotions are directly affected by the patient health status. In neutral talking environments, speakers can be easily verified, however, in emotional talking environments...
متن کاملSpeaker identification investigation and analysis in unbiased and biased emotional talking environments
This work aims at investigating and analyzing speaker identification in each unbiased and biased emotional talking environments based on a classifier called Suprasegmental Hidden Markov Models (SPHMMs). The first talking environment is unbiased towards any emotion, while the second talking environment is biased towards different emotions. Each of these talking environments is made up of six dis...
متن کاملEmploying Second-Order Circular Suprasegmental Hidden Markov Models to Enhance Speaker Identification Performance in Shouted Talking Environments
Speaker identification performance is almost perfect in neutral talking environments. However, the performance is deteriorated significantly in shouted talking environments. This work is devoted to proposing, implementing, and evaluating new models called Second-Order Circular Suprasegmental Hidden Markov Models (CSPHMM2s) to alleviate the deteriorated performance in the shouted talking environ...
متن کاملSpeaker Identification in each of the Neutral and Shouted Talking Environments based on Gender-Dependent Approach Using SPHMMs
It is well known that speaker identification performs extremely well in the neutral talking environments; however, the identification performance is declined sharply in the shouted talking environments. This work aims at proposing, implementing and testing a new approach to enhance the declined performance in the shouted talking environments. The new proposed approach is based on gender-depende...
متن کاملEmirati-Accented Speaker Identification in each of Neutral and Shouted Talking Environments
This work is devoted to capturing Emirati-accented speech database (Arabic United Arab Emirates database) in each of neutral and shouted talking environments in order to study and enhance text-independent Emirati-accented “speaker identification performance in shouted environment” based on each of “First-Order Circular Suprasegmental Hidden Markov Models (CSPHMM1s), Second-Order Circular Supras...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Speech Technology
دوره 16 شماره
صفحات -
تاریخ انتشار 2013